메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
X.W. Ye (Zhejiang University) T. Jin (Zhejiang University) W.M. Que (Zhejiang University) S.Y. Ma (Zhejiang University)
저널정보
국제구조공학회 Smart Structures and Systems, An International Journal Smart Structures and Systems, An International Journal Vol.31 No.4
발행연도
2023.4
수록면
311 - 323 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Ever since ancient times, earthquakes have been a major threat to the civil infrastructures and the safety of human beings. The majority of casualties in earthquake disasters are caused by the damaged civil infrastructures but not by the earthquake itself. Therefore, the efficient and accurate post-earthquake assessment of the conditions of structural damage has been an urgent need for human society. Traditional ways for post-earthquake structural assessment rely heavily on field investigation by experienced experts, yet, it is inevitably subjective and inefficient. Structural response data are also applied to assess the damage; however, it requires mounted sensor networks in advance and it is not intuitional. As many types of damaged states of structures are visible, computer vision-based post-earthquake structural assessment has attracted great attention among the engineers and scholars. With the development of image acquisition sensors, computing resources and deep learning algorithms, deep learning-based post-earthquake structural assessment has gradually shown potential in dealing with image acquisition and processing tasks. This paper comprehensively reviews the state-of-the-art studies of deep learning-based postearthquake structural assessment in recent years. The conventional way of image processing and machine learning-based structural assessment are presented briefly. The workflow of the methodology for computer vision and deep learning-based postearthquake structural assessment was introduced. Then, applications of assessment for multiple civil infrastructures are presented in detail. Finally, the challenges of current studies are summarized for reference in future works to improve the efficiency, robustness and accuracy in this field.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0