메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
양수진 (연세대학교)
저널정보
대한통합치과학회 대한통합치과학회지 대한통합치과학회지 제12권 제2호
발행연도
2023.5
수록면
43 - 74 (32page)
DOI
10.23034/jkaagd.2023.12.2.43

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The aim of this literature review is to investigate current application and diagnostic performance of AI in the dental field, address their limitations, and suggest possible future applications to AI in dentistry. Studies implementing deep learning in the dental field were searched, identified, and extracted from the electronic databases (PubMed, Cochrane Library, Scopus). Full-text articles describing the application of deep learning for the detection, classification, diagnosis, or clinical outcomes of dental problems as well as the study methods and deep learning architecture were included. The initial electronic search identified 1226 titles, and 115 studies were eventually included in the review. According to the evaluation criteria the studies all involved deep learning methods in dentistry (published 2016-2021), and the studies were divided into their scope of each subfield in dentistry; namely, anatomy (n=26), orthodontics (n=12), oral and maxillofacial surgery (n=29), endodontics and conservative dentistry (n=17), periodontology (n=5), implant dentistry (n=7), prosthodontics (n=3), forensic dentistry and identification (n=8), and etc. (n=8). There was a high risk of bias and applicability concerns were detected for most studies, mainly due to data selection and reference test conduct. Application of deep learning proposed in the studies exhibited wide clinical applications in the dental field. However, the evaluation criteria for the efficacy of deep learning have still not been clarified, and further verification of the reliability and applicability of the AI models is essential to implement these models to clinical practice.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0