메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Jung Hwa SEO (Adjunct lecturer Department of Spatial Design Seoul Institute of the Arts) Segeun CHUN (Professor Department of Spatial Design Seoul Institute of the Arts) Ki-Pyeong KIM (Department of Logistics and Trade Daejeon University)
저널정보
한국인공지능학회 인공지능연구 인공지능연구 제11권 제1호
발행연도
2023.3
수록면
25 - 29 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this paper, the purpose is to create a standard of AI training dataset type for commercial space design. As the market size of the field of space design continues to increase and the time spent increases indoors after COVID-19, interest in space is expanding throughout society. In addition, more and more consumers are getting used to the digital environment. Therefore, If you identify trends and preemptively propose the atmosphere and specifications that customers require quickly and easily, you can increase customer trust and conduct effective sales. As for the data set type, commercial districts were divided into a total of 8 categories, and images that could be processed were derived by refining 4,009,30MB JPG format images collected through web crawling. Then, by performing bounding and labeling operations, we developed a 'Dataset for AI Training' of 3,356 commercial space image data in CSV format with a size of 2.08MB. Through this study, elements of spatial images such as place type, space classification, and furniture can be extracted and used when developing AI algorithms, and it is expected that images requested by clients can be easily and quickly collected through spatial image input information.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0