메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김승우 ((주)리스크솔루션 연구개발센터) 이황기 ((주)해안해양기술 기술연구소) 최혁진 ((주)해안해양기술 기술연구소)
저널정보
한국연안방재학회 한국연안방재학회지 한국연안방재학회지 제10권 제1호
발행연도
2023.1
수록면
25 - 33 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this study, an artificial neural network (ANN) model for the typhoon wave overtopping was developed using the database by a numerical wave flume simulation. The developed ANN model is effective for saving calculation time largely. The accuracy of the model is also approached to over 95% of the numerical simulation. This accuracy was evaluated by the correlation coefficient and the root mean square error with the target data of the numerical simulation and output of the ANN model. This model quickly produces the mean wave overtopping rate, maximum wave run-up height, maximum wave overtopping depth and velocity at the middle point in the coastal road without high-fidelity numerical model and high-computing resources. It means that the typhoon warning system including the ANN models is powerful and useful rather than only the monitoring warning system currently in use.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0