메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김승민 (숭실대학교) 박대얼 (숭실대학교) 최대선 (숭실대학교)
저널정보
한국스마트미디어학회 스마트미디어저널 스마트미디어저널 제12권 제2호
발행연도
2023.3
수록면
56 - 65 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
뉴스와 취재 프로그램 같은 방송에서는 제보자의 신원 보호를 위해 음성을 변조한다. 음성 변조 방법으로 피치(pitch)를 조절하는 방법이 가장 많이 사용되는데, 이 방법은 피치를 재조절하는 방식으로 쉽게 원본 음성과 유사하게 음성 복원이 가능하다. 따라서 방송 음성 변조 방법은 화자의 신원 보호를 제대로 해줄 수 없고 보안상 취약하기 때문에 이를 대체하기 위한 새로운 음성 변조 방법이 필요하다. 본 논문에서는 Voice Privacy Challenge에서 비식별화 성능이 검증된 Lightweight 음성 비식별화 모델을 성능 비교 모델로 사용하여 피치 조절을 사용한 방송 음성 변조 방법과 음성 비식별화 성능 비교 실험 및 평가를 진행한다. Lightweight 음성 비식별화 모델의 6가지 변조 방법 중 비식별화 성능이 좋은 3가지 변조 방법 McAdams, Resampling, Vocal Tract Length Normalization(VTLN)을 사용하였으며 한국어 음성에 대한 비식별화 성능을 비교하기 위해 휴먼 테스트와 EER(Equal Error Rate) 테스트를 진행하였다. 실험 결과로 휴먼 테스트와 EER 테스트 모두 VTLN 변조 방법이 방송 변조보다 더 높은 비식별화 성능을 보였다. 결과적으로 한국어 음성에 대해 Lightweight 모델의 변조 방법은 충분한 비식별화 성능을 가지고 있으며 보안상 취약한 방송 음성 변조를 대체할 수 있을 것이다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0