메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Lee Dong Uk (Biomedical Manufacturing Technology Center Korea Institute of Industrial Technology) Kim Se-Chang (Major of Biomedical Engineering Division of Smart Healthcare College of Information Technology and Convergence and New‑Senior Healthcare Innovation Center (BK21 Plus) Pukyong National University) 최동윤 (한국생산기술연구원) Jung Won-Kyo (Major of Biomedical Engineering Division of Smart Healthcare College of Information Technology and Convergence and New‑Senior Healthcare Innovation Center (BK21 Plus) Pukyong National University) Moon Myungjun (Department of Industrial Chemistry Pukyong National University Busan 48513 South Korea)
저널정보
한국생체재료학회 생체재료학회지 생체재료학회지 제27권
발행연도
2023.3
수록면
624 - 638 (15page)
DOI
10.1186/s40824-023-00355-0

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background : The wound healing process is a complex cascade of physiological events, which are vulnerable to both our body status and external factors and whose impairment could lead to chronic wounds or wound healing impediments. Conventional wound healing materials are widely used in clinical management, however, they do not usually prevent wounds from being infected by bacteria or viruses. Therefore, simultaneous wound status monitoring and prevention of microbial infection are required to promote healing in clinical wound management. Methods : Basic amino acid-modified surfaces were fabricated in a water-based process via a peptide coupling reaction. Specimens were analyzed and characterized by X-ray photoelectron spectroscopy, Kelvin probe force microscopy, atomic force microscopy, contact angle, and molecular electrostatic potential via Gaussian 09. Antimicrobial and biofilm inhibition tests were conducted on Escherichia coli and Staphylococcus epidermidis. Biocompatibility was determined through cytotoxicity tests on human epithelial keratinocytes and human dermal fibroblasts. Wound healing efficacy was confirmed by mouse wound healing and cell staining tests. Workability of the pH sensor on basic amino acid-modified surfaces was evaluated on normal human skin and Staphylococcus epidermidis suspension, and in vivo conditions. Results : Basic amino acids (lysine and arginine) have pH-dependent zwitterionic functional groups. The basic amino acid-modified surfaces had antifouling and antimicrobial properties similar to those of cationic antimicrobial peptides because zwitterionic functional groups have intrinsic cationic amphiphilic characteristics. Compared with untreated polyimide and modified anionic acid (leucine), basic amino acid-modified polyimide surfaces displayed excellent bactericidal, antifouling (reduction ~ 99.6%) and biofilm inhibition performance. The basic amino acid-modified polyimide surfaces also exhibited wound healing efficacy and excellent biocompatibility, confirmed by cytotoxicity and ICR mouse wound healing tests. The basic amino acid-modified surface-based pH monitoring sensor was workable (sensitivity 20 mV pH-1) under various pH and bacterial contamination conditions. Conclusion : Here, we developed a biocompatible and pH-monitorable wound healing dressing with antimicrobial activity via basic amino acid-mediated surface modification, creating cationic amphiphilic surfaces. Basic amino acid-modified polyimide is promising for monitoring wounds, protecting them from microbial infection, and promoting their healing. Our findings are expected to contribute to wound management and could be expanded to various wearable healthcare devices for clinical, biomedical, and healthcare applications.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0