메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
유학제 (고려대학교) 염윤진 (고려대학교 의과대학) 박수완 (고려대학교 의료빅데이터연구소) 이정문 (고려대학교 의과대학) 장문정 (고려대학교 의과대학) 김유중 (가톨릭대학교) 김종호 (고려대학교) 박현준 (고려대학교) 박재형 (고려대학교) 주형준 (고려대학교)
저널정보
대한의료정보학회 Healthcare Informatics Research Healthcare Informatics Research 제29권 제2호
발행연도
2023.4
수록면
132 - 144 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objectives: Electrocardiography (ECG)-based diagnosis by experts cannot maintain uniform quality because individual differencesmay occur. Previous public databases can be used for clinical studies, but there is no common standard that wouldallow databases to be combined. For this reason, it is difficult to conduct research that derives results by combining databases. Recent commercial ECG machines offer diagnoses similar to those of a physician. Therefore, the purpose of this study was toconstruct a standardized ECG database using computerized diagnoses. Methods: The constructed database was standardizedusing Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) and Observational Medical Outcomes Partnership–common data model (OMOP-CDM), and data were then categorized into 10 groups based on the Minnesota classification. In addition, to extract high-quality waveforms, poor-quality ECGs were removed, and database bias was minimizedby extracting at least 2,000 cases for each group. To check database quality, the difference in baseline displacement accordingto whether poor ECGs were removed was analyzed, and the usefulness of the database was verified with seven classificationmodels using waveforms. Results: The standardized KURIAS-ECG database consists of high-quality ECGs from 13,862 patients,with about 20,000 data points, making it possible to obtain more than 2,000 for each Minnesota classification. An artificialintelligence classification model using the data extracted through SNOMED-CT showed an average accuracy of 88.03%. Conclusions: The KURIAS-ECG database contains standardized ECG data extracted from various machines. The proposedprotocol should promote cardiovascular disease research using big data and artificial intelligence.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0