메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
M. Praveen Kumar (Visvesvaraya Technological University) Sarika Raga (Visvesvaraya Technological University) S. Chetana (ATME College of Engineering) K. Avinash (ATME College of Engineering) Arjun Dey (U. R. Rao Satellite Centre(Formerly Known ISRO Satellite Centre)) Dinesh Rangappa (Visvesvaraya Technological University)
저널정보
한국전기전자재료학회 Transactions on Electrical and Electronic Materials Transactions on Electrical and Electronic Materials 제24권 제3호
발행연도
2023.6
수록면
235 - 241 (7page)
DOI
https://doi.org/10.1007/s42341-023-00439-7

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
2D nanomaterial, especially 2D metal carbides or MXene loaded polymer nanocomposite is highly valued electromagnetic material. In this work, Ti3C2TX MXene loaded polyvinyl butyral (PVB)-Poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS)-Ti3C2TX MXene nanocomposite is explored for microwave absorption in the frequency range of X-Band and Ku-Band (8.2–18 GHz). The reflection loss (RL) of the optimized PEDOT:PSS content PVB-PEDOT:PSS was found to improve significantly in presence of the Ti3C2TX MXene viz., 5%, 10%, 20% and 40%. Ti3C2TX MXene loaded solution processed PVB-PEDOT:PSS-Ti3C2TX MXene indicates RL is strongly effected by Ti3C2TX MXene loading. To optimize Ti3C2TX MXene content in PVB-PEDOT:PSS-Ti3C2TX MXene nanocomposite for best RL with minimum thickness, the materials data-driven discovery was used for which experimental data sets were used as input parameters. Through the materials data-driven discovery, the minimum RL value -63 dB was predicted at 2.6 mm for 18 wt% Ti3C2TX MXene loaded PVB-PEDOT:PSS-Ti3C2TX MXene nanocomposite which was not examine before. The predicted RL data for the optimized PVB-PEDOT:PSS-Ti3C2TX MXene nanocomposite (18 wt% MXene content) was compared with the experimental data.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0