메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
곽건신 (세명대학교 한의과대학 내과학교실) 고흥 (세명대학교) 신선미 (세명대학교)
저널정보
대한한방내과학회 대한한방내과학회지 대한한방내과학회지 제44권 제1호
발행연도
2023.3
수록면
35 - 52 (18page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objective: Internal injuries and consumptive disease have different causes, yet they can affect each other. The relationship and combination of prescription drugs in the clinical practice of internal injuries and consumptive disease were analyzed for various diseases of “Donguibogam” through network analysis. Methods: The prescriptions used in consumptive disease and internal injury were established by conducting a full survey on the papers extracted from Donguibogam. The R version 4.0.3 (2020-10-10) and the igraph and arules package were used to perform network analysis and association rule relationship mining analysis in the first and second prescription compositions. Results: The herb frequently used for internal injury was Glycyrrhizae Radix, while the herb combination frequently used was Citri Pericarpium-Glycyrrhizae Radix. For centrality, the main factor was generally Glycyrrhizae Radix. In the case of consumptive disease, the herb most frequently used was Angelicae Gigantis Radix, and the combination most frequently used was Rehmanniae Radix Preparata-Angelicae Gigantis Radix. In terms of centrality, it was Angelicae Gigantis Radix. As a result of the network analysis of herbal prescription frequency, each group was divided into three. Conclusion: The interrelationship between internal injury and consumptive disease prescription drugs may reveal the differences and similarities between internal injury and consumptive disease and may serve as a basis for the development of new drugs or materials that can enhance mutual effectiveness in the treatment of internal injury and consumptive diseases.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0