메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
박기현 (한국한의학연구원 한의약 데이터부) 김상혁 (한국한의학연구원 한의약 데이터부) 이시우 (한국한의학연구원 한의약데이터부) 배광호 (한국한의학연구원)
저널정보
대한한방내과학회 대한한방내과학회지 대한한방내과학회지 제43권 제6호
발행연도
2022.12
수록면
1,063 - 1,074 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objectives: The aim of this study was to investigate the differences in the prevalence of metabolic syndrome (MetS) according to the Sasang constitution (SC) and cold and heat pattern identification (CHPI). Methods: SC, CHPI, MetS, and component data were obtained from 2,561 participants in 26 Korean medical clinics from 2007 to 2013. SC, diagnosed by Korean medicine doctors, was confirmed by positive responses to herbal medicines administered according to that constitution. The CHPI was verified by a questionnaire about thermal sensitivity and drinking habits. The diagnosis criteria for MetS were: 1) waist circumference (WC) ≥90 cm (male) and ≥80 cm (female); 2) triglycerides ≥150 mg/dL; 3) high density lipoprotein cholesterol (HDL) <40 mg/dL (male) and <50 mg/dL (female); 4) blood pressure ≧130/85 mmHg; and 5) fasting blood glucose ≥100 mg/dL. Odds ratios (ORs) and differences in MetS and its components were compared using logistic regression and ANCOVA. Results: The MetS prevalence rates were 54.1%, 22.0%, and 33.3% for Taeeumin (TE), Soeumin (SE), and Soyangin (SY), respectively, and 30.5% and 44.5% for the cold and heat patterns, respectively. ANCOVA for MetS components showed significantly higher WC in TE than in SE or SY, and all components except HDL were higher in the heat pattern group than in the cold pattern group. Logistic regression for MetS prevalence showed a significant association between TE and the heat pattern group (OR=1.653) but not for non-TE and the cold pattern group. Conclusions: Considering SC and CHPI together may be more effective in managing MetS than considering SC alone.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0