메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
문성일 (인하대학교) 고영호 (인하대학교) 박지훈 (인하대학교) 박헌진 (인하대학교)
저널정보
한국자료분석학회 Journal of The Korean Data Analysis Society Journal of The Korean Data Analysis Society 제25권 제1호
발행연도
2023.2
수록면
63 - 78 (16page)
DOI
10.37727/jkdas.2022.25.1.63

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
최근 항적 데이터를 통해 항공 사고의 전조 징후를 분석하고 이를 탐지하는 방법이 연구되고 있다. 하지만 연구 대부분은 이·착륙 단계에 국한되어 있고, 순항 단계로 특정하는 규칙이 존재하지 않기 때문에 순항 단계 탐색 연구는 드문 실정이다. 이 단계에서는 속도보다는 고도, 경로에 따른 이탈이 발생하게 되는데, 본 논문에서는 순항 단계의 고도 이탈을 클러스터링 방법으로 탐지하려고 한다. 2019년 1월부터 12월까지 수신된 ADS-B(automatic dependent surveillance- broadcast) 항적 자료에서 국내선 중 가장 많이 운행하는 제주 공항에서 김포 공항으로 운항하는 항공편의 10%를 sampling 하여 약 4,400편의 항공편을 대상으로 연구를 진행했다. MARS (multivariate adaptive regression splines) 모형과 단순 선형 회귀모형을 통해 항적 간의 기울기를 계산하여 순항 단계라고 정의할 수 있는 구간인 순항 기울기를 정의하였다. 그리고 Distance Measure인 EDR(edit distance on real sequence)과 DTW(dynamic time wraping)를 활용해 항공편 간의 비유사도를 계산하였다. 2가지 클러스터 방법인 PAM, Hierarchical clustering 사용하였고, 평균 실루엣 너비가 가장 큰 PAM(partitioning around medoids)을 통해 항공편을 군집화했다. PAM을 통해 분류된 클러스터의 중심과 클러스터 내의 항공편 사이의 비유사도 값을 통해 이상치를 판별하였고, 약 12% 항공편이 이상치 항공편이 탐지되었다. 전조 징후 중 하나인 고도 이탈을 보다 일찍 탐지하여 항공 사고를 막을 수 있을 것으로 기대된다. 후속 연구에서는 항공 분야의 전문가의 도움으로 수집된 정상 데이터를 기반으로 이상치를 탐지하는 준-지도 학습(semi-supervised learning) 방법을 통해 이상치 탐지를 진행할 수 있다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0