메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김영곤 (서울대학교병원) 송인혜 (서울성모병원) 조승연 (서울대학교병원) 김성철 (울산대학교) 김미림 (분당서울대학교병원) 안수민 (분당서울대학교병원) 이현나 (서울아산병원) 양동현 (울산대학교) 김남국 (울산대학교) 김성완 (서울대학교) 김태우 (한국과학기술원 KAIST 바이오융합연구소) 김대영 (한국과학기술원) 최종현 (Knowledge of AI Lab NCSOFT Seongnam) 이기선 (고려대학교) 마민욱 (한국과학기술원) 조민기 (한국과학기술원) 박소연 (서울대학교) 공경엽 (서울아산병원)
저널정보
대한암학회 Cancer Research and Treatment Cancer Research and Treatment 제55권 제2호
발행연도
2023.4
수록면
513 - 522 (10page)
DOI
10.4143/crt.2022.055

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose Assessing the metastasis status of the sentinel lymph nodes (SLNs) for hematoxylin and eosin–stained frozen tissue sections by pathologists is an essential but tedious and time-consuming task that contributes to accurate breast cancer staging. This study aimed to review a challenge competition (HeLP 2019) for the development of automated solutions for classifying the metastasis status of breast cancer patients. Materials and Methods A total of 524 digital slides were obtained from frozen SLN sections: 297 (56.7%) from Asan Medical Center (AMC) and 227 (43.4%) from Seoul National University Bundang Hospital (SNUBH), South Korea. The slides were divided into training, development, and validation sets, where the development set comprised slides from both institutions and training and validation set included slides from only AMC and SNUBH, respectively. The algorithms were assessed for area under the receiver operating characteristic curve (AUC) and measurement of the longest metastatic tumor diameter. The final total scores were calculated as the mean of the two metrics, and the three teams with AUC values greater than 0.500 were selected for review and analysis in this study. Results The top three teams showed AUC values of 0.891, 0.809, and 0.736 and major axis prediction scores of 0.525, 0.459, and 0.387 for the validation set. The major factor that lowered the diagnostic accuracy was micro-metastasis. Conclusion In this challenge competition, accurate deep learning algorithms were developed that can be helpful for making a diagnosis on intraoperative SLN biopsy. The clinical utility of this approach was evaluated by including an external validation set from SNUBH.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0