메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Kyeongsik Ha (Pusan National University) Young Hoon Moon (Pusan National University) Tae Hwan Kim (Lincsolution Co. LTD) Gyeong Yun Baek (Gwangju University) Ki Yong Lee (Korea Institute of Industrial Technology) Do-sik Shim (Korea Maritime and Ocean University) Wookjin Lee (Pusan National University)
저널정보
대한금속·재료학회 Metals and Materials International Metals and Materials International Vol.29 No.5
발행연도
2023.5
수록면
1,399 - 1,420 (22page)
DOI
10.1007/s12540-022-01293-7

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study aimed to develop a computational methodology to estimate the residual stress formation behavior followed by direct energy deposition of high-speed tool steel hard materials. First, evolutions of substrate distortions followed by the depositions of AISI M4 tool steel layers were investigated by experiments and the results were analyzed using the elasticity-based Stoney’s approach. The results revealed significant additional distortion caused by the temperature gradient formed when depositing the first M4 layer. Distortions occurring on depositing the second and subsequent M4 layers could be approximated as linearly increasing with the total M4 layer thickness, indicating a stable inherent shrinkage strain for each layer deposition process. It was also clearly revealed that the elastic Stoney’s approach is not capable of predicting the residual stress in the studied direct energy deposition system as significant plastic deformations are expected to occur. Based on the experimental observations, a phenomenological finite element (FE) model was developed considering the elastoplastic behavior of materials. The FE simulation results showed very good agreement with the experimentally measured distortions during the M4 deposition process in a wide range of deposition areas and thicknesses. Thus, the proposed model can be used effectively for controlling the distortions and analyzing residual stress evolutions during hard-facing or repairing processes using direct energy deposition.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0