메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
한기향 (건국대학교 GLOCAL(글로컬)캠퍼스) 이민선 (건국대학교)
저널정보
복식문화학회 복식문화연구 복식문화연구 제31권 제1호
발행연도
2023.2
수록면
53 - 69 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study aims to analyze research trends regarding outdoor wear. For this purpose, the data-collection period was limited to January 2002–October 2022, and the collection consisted of titles of papers, academic names, abstracts, and publication years from the Research Information Sharing Service (RISS). Frequency analysis was conducted on 227 papers in total to check academic journals and annual trends, and LDA topic-modeling analysis was conducted using 20,964 tokens. Data pre-processing was performed prior to topic-modeling analysis; after that, topic-modeling analysis, core topic derivation, and visualization were performed using a Python algorithm. A total of eight topics were obtained from the comprehensive analysis: experiential marketing and lifestyle, property and evaluation of outdoor wear, design and patterns of outdoor wear, outdoor-wear purchase behavior, color, designs and materials of outdoor wear, promotional strategies for outdoor wear, purchase intention and satisfaction depending on the brand image of outdoor wear, differences in outdoor wear preferences by consumer group. The results of topic-modeling analysis revealed that the topic, which includes a study on the design and material of outdoor wear and the pattern of jackets related to the overall shape, was the highest at 30.9% of the total topics. The next highest topic was also the design and color of outdoor wear, indicating that design-related research was the main research topic in outdoor wear research. It is hoped that analyzing outdoor wear research will help comprehend the research conducted thus far and reveal future directions.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0