메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Mansoor Shakeel (University of Engineering and Technology) Rizwan Azam (University of Engineering and Technology) Muhammad R. Riaz (University of Engineering and Technology)
저널정보
국제구조공학회 Structural Engineering and Mechanics, An Int'l Journal Structural Engineering and Mechanics, An Int'l Journal Vol.86 No.3
발행연도
2023.5
수록면
337 - 348 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The optimization of reinforced concrete (RC) cantilever retaining walls is a complex problem and requires the use of advanced techniques like metaheuristic algorithms. For this purpose, an optimization model must first be developed, which involves mathematical complications, multidisciplinary knowledge, and programming skills. This task has proven to be too arduous and has halted the mainstream acceptance of optimization. Therefore, it is necessary to unravel the complications of optimization into an easily applicable form. Currently, the most commonly used method for designing retaining walls is by following the proportioning limits provided by the ACI handbook. However, these limits, derived manually, are not verified by any optimization technique. There is a need to validate or modify these limits, using optimization algorithms to consider them as optimal limits. Therefore, this study aims to propose updated proportioning limits for the economical design of a RC cantilever retaining wall through a comprehensive parametric investigation using the genetic algorithm (GA). Multiple simulations are run to examine various design parameters, and trends are drawn to determine effective ranges. The optimal limits are derived for 5 geometric and 3 reinforcement variables and validated by comparison with their predecessor, ACI’s preliminary proportioning limits. The results indicate close proximity between the optimized and code-provided ranges; however, the use of optimal limits can lead to additional cost optimization. Modifications to achieve further optimization are also discussed. Besides the geometric variables, other design parameters not covered by the ACI building code, like reinforcement ratios, bar diameters, and material strengths, and their effects on cost optimization, are also discussed. The findings of this investigation can be used by experienced engineers to refine their designs, without delving into the complexities of optimization.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0