메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Mohan Khatri (Mizoram University) Jay Prakash Singh (Mizoram University)
저널정보
대한수학회 대한수학회보 대한수학회보 제60권 제3호
발행연도
2023.5
수록면
717 - 732 (16page)
DOI
10.4134/BKMS.b220349

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The goal of this paper is to analyze the generalized $m$-quasi-Einstein structure in the context of almost Kenmotsu manifolds. Firstly we showed that a complete Kenmotsu manifold admitting a generalized $m$-quasi-Einstein structure $(g,f,m,\lambda)$ is locally isometric to a hyperbolic space $\mathbb{H}^{2n+1}(-1)$ or a warped product $\widetilde{M}\times_\gamma\mathbb{R}$ under certain conditions. Next, we proved that a $(\kappa,\mu)'$-almost Kenmotsu manifold with $h'\neq0$ admitting a closed generalized $m$-quasi-Einstein metric is locally isometric to some warped product spaces. Finally, a generalized $m$-quasi-Einstein metric $(g,f,m,\lambda)$ in almost Kenmotsu 3-H-manifold is considered and proved that either it is locally isometric to the hyperbolic space $\mathbb{H}^3(-1)$ or the Riemannian product $\mathbb{H}^2(-4)\times\mathbb{R}$.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0