메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Reikard Gordon (Statistics Department United States Cellular Corp. Chicago IL USA)
저널정보
한국국제경제학회 International Economic Journal International Economic Journal Vol.37 No.2
발행연도
2023.6
수록면
202 - 219 (18page)
DOI
10.1080/10168737.2023.2194292

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
There are two major issues in using artificial intelligence to forecast exchange rates, choice of methodology and choice of causal models. A further complication is the nonstationarity of the data. This study compares artificial neural networks, nonlinear regressions and recurrent neural networks, using seven econometric models, in fore- casting four major exchange rates over horizons of 1–3 months. The models are trained over moving windows and estimated in both lev- els and differences. There are three key findings. First, the multilayer perceptron nearly always achieves the most accurate forecasts, with the regressions in second place. The recurrent neural network places a distant third. Second, at horizons of 1 and 2 months, the perceptron is usually better in differences. At the 3-month horizon, however, the accuracy in differences deteriorates. Third, the perceptron favors models including international differentials in price levels, interest rates and yields, which achieve the best forecasts in the majority of cases. Several other models are competitive. One is the familiar Dornbusch-Frankel equation which uses differentials in inflation, output, interest rates and money supplies. Another is a combined model, the Dornbusch-Frankel equation with an additional term for the yield differential. Models using differentials in real interest rates do well in one instance.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0