메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Nguyen, Quang Minh (Hanoi University of Mining and Geology) La, Phu Hien (Thuyloi University) Nguyen, Thi Thu Huong (Hanoi University of Mining and Geology) Hoang, Ngoc Ha (Hanoi University of Mining and Geology)
저널정보
한국측량학회 한국측량학회지 한국측량학회지 제41권 제5호
발행연도
2023.10
수록면
395 - 405 (11page)
DOI
10.7848/ksgpc.2023.41.5.395

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, a new approach for the improvement of accuracy in DEMs (Digital Elevation Models) was proposed. While algorithms such as bilinear, bicubic, Kriging, and the HNN (Hopfield neural network) model can enhance the accuracy of DEMs, especially those derived from global data sources such as SRTM, ASTER, etc., the inclusion of additional elevation data can further improve the accuracy of the DEM. In this paper, a newly proposed resolution enhancing HNN model with the incorporation of elevation adjustment functions and variations in constraint conditions was developed and evaluated. The evaluation of the model was implemented in Cao Bang using SRTM 30m DEM data in a 1650m × 1344m area, with 130 elevation points used for accuracy enhancement and 64 points used for evaluation. The test results show an increase in accuracy of up to 40% in terms of both roots mean square error and mean absolute error when the additional elevation points were used. It has also been discovered that a zoom factor of 4 provides the best optimization in terms of balancing accuracy and computing cost for the newly proposed HNN downscaling algorithm. The results indicate that the model has the potential to be applied in practice to enhance the accuracy of DEMs, especially global DEMs after additional evaluation.

목차

Abstract
1. Introduction
2. Methods
3. Data
4. Experiment
5. Results and discussion
6. Conclusions
References

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088339971