메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Miracle Udurume (Kumoh National Institute of Technology) Erick C. Valverde (Kumoh National Institute of Technology) Angela Caliwag (Kumoh National Institute of Technology) Sangho Kim (Kumoh National Institute of Technology) Wansu Lim (Kumoh National Institute of Technology)
저널정보
대한인간공학회 대한인간공학회지 대한인간공학회지 제42권 제5호
발행연도
2023.10
수록면
417 - 433 (17page)
DOI
10.5143/JESK.2023.42.5.417

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Objective: The previous study explored the use of multimodality for accurate emotion predictions. However, limited research has addressed real-time implementation due to the challenges of simultaneous emotion recognition. To tackle this issue, we propose a real-time multimodal emotion recognition system based on multithreaded weighted average fusion.

Background: Emotion recognition stands as a crucial component in human-machine interaction. Challenges arise in emotion recognition due to the diverse expressions of emotions across various forms such as visual cues, auditory signals, text, and physiological responses. Recent advances in the field highlight that combining multimodal inputs, such as voice, speech, and EEG signals, yields superior results compared to unimodal approaches.

Method: We have constructed a multithreaded system to facilitate the simultaneous utilization of diverse modalities, ensuring continuous synchronization. Building upon previous work, we have enhanced our approach by incorporating weighted average fusion alongside the multithreaded system. This enhancement allows us to predict emotions based on the highest probability score.

Results: Our implementation demonstrated the ability of the proposed model to recognize and predict user emotions in real-time, resulting in improved accuracy in emotion recognition.

Conclusion: This technology has the potential to enrich user experiences and applications by enabling real-time understanding and response to human emotions.

Application: The proposed real-time multimodal emotion recognition system holds promising applications in various domains, including human-computer interaction, healthcare, and entertainment.

목차

1. Introduction
2. Related Works
3. Proposed Method
4. Results and Discussion
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0