메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
신선한 (덕성여자대학교) 김재희 (덕성여자대학교)
저널정보
한국통계학회 응용통계연구 응용통계연구 제36권 제5호
발행연도
2023.10
수록면
361 - 380 (20page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Magnetoencephalography (MEG)는 뉴론 활동에 신경 세포들간 전류 흐름에 의해 유도된 자기장을 측정하는 비침습 뇌영상 기술이다. 기능적 뇌활동은 뇌영역간 또는 뉴런들의 연결로 기능적 연결로 수행된다. MEG데이터는 상관성, 시공간성을 가지며 다중 다층적 동적 네트워크인 특징을 갖는다. 이러한 복잡성 때문에 MEG 네트워크 대한 연구는 아직 많지 않은 편이다. 본 연구에서는 MEG 네트워크 모형과 분석법을 소개하고 실제 MEG 데이터 분석에 활용되어 해석된 경우를 요약하고 앞으로 MEG 네트워크 모형과 개발 연구의 필요성을 설명하고자 한다. 그러므로 통계적 네트워크 분석이 뇌과학에서 신경학적 질병을 포함하여 뇌기능에 대한 이해에 중요한 역할을 할 수 있음을 알리고자 한다.

목차

Abstract
1. 서론
2. MEG 기술 및 데이터 특성
3. 네트워크의 기본 개념과 기초 통계량
4. MEG 관련 네트워크 모형과 분석
5. MEG 시간적 네트워크
6. MEG 다층 네트워크
7. MEG 데이터에 대한 최소 시장 트리
8. 결론 및 논의
References
요약

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088291930