메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정재욱 (서울과학기술대)
저널정보
대한건축학회 대한건축학회논문집 大韓建築學會論文集 第39卷 第10號(通卷 第420號)
발행연도
2023.10
수록면
291 - 298 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study aims to develop a web-based quantitative risk assessment model for the construction industry, focusing on the entire project life cycle. The construction industry is known for its higher risk compared to other sectors. In response to safety concerns, the South Korean government has mandated safety risk assessments before the construction phase. However, these methods have been predominantly qualitative and subjective. To address this issue, this study proposes a web-based quantitative risk assessment model tailored to the construction industry, considering the entire project life cycle. The outlined four-step approach for the model"s development entails data collection to gather relevant data, accident probability calculation by determining the likelihood of accidents, project characteristic definition of identifying project-specific attributes, and accident-related loss calculation by assessing potential losses due to accidents. This model was then applied to actual construction projects. The findings indicate estimated accident-related losses of 100 million KRW, with a fatality rate of 1.02 and an injury rate of 1.50 during the project phase. In the design phase, the rates were 4.6×10<SUP>-2</SUP> for fatality and 3.7×10<SUP>-2</SUP> for injury, while in the construction phase, they were 4.2×10<SUP>-4</SUP><SUP></SUP> for fatality and 1.3×10<SUP>-3</SUP> for injury. This study provides a valuable tool for assessing high-risk areas throughout the entire project life cycle, thereby contributing to improved safety practices in the construction industry.

목차

Abstract
1. 서론
2. 선행연구 분석
3. 연구 방법
4. 연구 결과분석 및 토의
5. 결론
REFERENCES

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0