메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Soo-Hyun Choi (Changwon National University) Ye-Eun Cho (Changwon National University) Do-Hyun Kim (Changwon National University) Jin-il Kim (Changwon National University) Jihee Yun (Changwon National University) Jae-Yoon Jo (Changwon National University) Jae-Min Lim (Changwon National University)
저널정보
한국질량분석학회 Mass Spectrometry Letters Mass Spectrometry Letters Vol.13 No.4
발행연도
2022.12
수록면
139 - 145 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Protein glycosylation is a common post-translational modification by non-template-based biosynthesis. In fungal biotechnology, which has great applications in pharmaceuticals and industries, the importance of research on fungal glycoproteins and glycans is accelerating. In particular, the importance of quantitative analysis of fungal glycans is emerging in research on the production of filamentous fungal proteins by genetic modification. Reliable mass spectrometry-based techniques for quantitative glycomics have evolved into chemical, enzymatic, and metabolic stable isotope labeling methods. In this study, we intend to expand quantitative glycomics by metabolic isotope labeling of glycans in Aspergillus niger, a filamentous fungus model, by the MILPIG method. We demonstrate that incubation of filamentous fungi in a culture medium with carbon-13 labeled glucose (1-13C1) efficiently incorporates carbon-13 into N-linked glycans. In addition, for quantitative validation of this method, light and heavy glycans are mixed 1:1 to show the performance of quantitative analysis of various N-linked glycans simultaneously. We have successfully quantified fungal glycans by MILPIG and expect it to be widely applicable to glycan expression levels under various biological conditions in fungi.

목차

Abstract
Introduction
Experimental
Results and Discussion
Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0