메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김재웅 (국민대학교) 정승렬 (국민대학교) 김남규 (국민대학교)
저널정보
한국지능정보시스템학회 지능정보연구 지능정보연구 제29권 제3호
발행연도
2023.9
수록면
229 - 247 (19page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
여러 분야에서 이상탐지의 중요성이 강조됨에 따라, 다양한 데이터 유형과 이상치 유형에 대한 이상탐지 알고리즘이 개발되고 있다. 하지만 이상탐지 알고리즘의 성능은 주로 공개 데이터 세트에 대해 측정될 뿐 특정 유형의 이상치에서 나타나는 각 알고리즘의 성능은 확인되지 않고 있으므로, 분석 상황에 맞는 적절한 이상탐지 알고리즘 선택에 어려움이 있다. 이에 본 논문에서는 이상치의 유형과 다양한 데이터 속성을 먼저 파악하여, 이를 기반으로 적절한 이상탐지 알고리즘 선택에 도움을 줄 수 있는 방안을 제시하고자 한다. 구체적으로 본 연구에서는 지역, 전역, 종속성, 그리고 군집화의 총 4가지 이상치 유형에 대해 이상탐지 알고리즘의 성능을 비교하고, 추가 분석을 통해 라벨 수준, 데이터 개수, 그리고 차원 수가 성능에 미치는 영향을 확인한다. 실험 결과 이상치 유형에 따라 가장 우수한 성능을 나타내는 알고리즘이 다르게 나타나며, 이상치 유형에 대한 정보가 없는 경우에도 안정적인 성능을 보여주는 알고리즘을 확인했다. 또한 비지도 학습 기반 이상탐지 알고리즘의 성능이 지도 학습 및 준지도 학습 알고리즘의 성능보다 낮게 나타나는 유형을 확인하였다. 마지막으로 데이터 개수가 상대적으로 적거나 많을 때 대부분 알고리즘들의 성능이 이상치 유형에 더 강하게 영향을 받으며, 상대적으로 고차원일 경우 지역, 전역 이상치에서는 우수한 성능을 보였지만 군집화 이상치 유형에서 낮은 성능을 나타냄을 확인하였다.

목차

1. 서론
2. 관련 연구
3. 연구 문제 및 모형
4. 실험
5. 결론
참고문헌(References)
Abstract

참고문헌 (46)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088055390