메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
장동현 (경북대학교) 김진수 (경북대학교) 이민호 (경북대학교)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회 학술발표논문집 2023년 한국컴퓨터정보학회 하계학술대회 논문집 제31권 2호
발행연도
2023.7
수록면
541 - 544 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
LLM(Largescale Language Model)의 성능 향상을 위한 비용 효율적인 방법으로 ChatGPT, GPT-4와 같은 초거대 모델의 output에 대해 SLM(Small Language Model)을 finetune하는 방법이 주목받고 있다. 그러나, 이러한 접근법은 주로 범용적인 지시사항 모델을 위한 학습 방법으로 사용되며, 제한된 특정 도메인에서는 추가적인 성능 개선의 여지가 있다. 본 연구는 특정 도메인(Writing Assistant)에서의 성능 향상을 위한 새로운 방법인 Self-Guided Approach를 제안한다.
Self-Guided Approach는 (1) LLM을 활용해 시드 데이터에 대해 도메인 특화된 metric(유용성, 관련성, 정확성, 세부사항의 수준별) 점수를 매기고, (2) 점수가 매겨진 데이터와 점수가 매겨지지 않은 데이터를 모두 활용하여 supervised 방식으로 SLM을 미세 조정한다. Vicuna에서 제안된 평가 방법인, GPT-4를 활용한 자동평가 프레임워크를 사용하여 Self-Guided Approach로 학습된 SLM의 성능을 평가하였다.
평가 결과 Self-Guided Approach가 Self-instruct, alpaca와 같이, 생성된 instruction 데이터에 튜닝하는 기존의 훈련 방법에 비해 성능이 향상됨을 확인했다. 다양한 스케일의 한국어 오픈 소스 LLM(Polyglot1.3B, PolyGlot3.8B, PolyGlot5.8B)에 대해서 Self-Guided Approach를 활용한 성능 개선을 확인했다. 평가는 GPT-4를 활용한 자동 평가를 진행했으며, Korean Novel Generation 도메인의 경우, 테스트 셋에서 4.547점에서 6.286점의 성능 향상이 발생했으며, Korean scenario Genration 도메인의 경우, 테스트 셋에서 4.038점에서 5.795 점의 성능 향상이 발생했으며, 다른 유사 도메인들에서도 비슷한 점수 향상을 확인했다.
Self-Guided Approach의 활용을 통해 특정 도메인(Writing Assistant)에서의 SLM의 성능 개선 가능성을 확인했으며 이는 LLM에 비용부담을 크게 줄이면서도 제한된 도메인에서 성능을 유지하며, LLM을 활용한 응용 서비스에 있어 실질적인 도움을 제공할 수 있을 것으로 기대된다.

목차

요약
Ⅰ. Introduction
Ⅱ. Related Works
Ⅲ. The Proposed Scheme
Ⅳ. Experiment
Ⅴ. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-004-001641598