메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
유정민 (국방대학교)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회 학술발표논문집 2023년 한국컴퓨터정보학회 하계학술대회 논문집 제31권 2호
발행연도
2023.7
수록면
335 - 338 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
국방 무기체계의 운용유지를 위해서는 숙련자에 의한 신뢰성있는 정비 지원이 필요하다. 특히, 고도의 기술력을 바탕으로 연구/제작된 해군 무기체계를 유지하기 위해서는 이와같은 정비 지원이 무엇보다 중요하다. 해군에서는 효과적인 정비지원을 위해 수개의 정비지원부대를 조직하여 운용하고 있다. 원활한 정비지원부대의 운용을 위해 다년간 기술력을 축적한 정비인원의 중도 이탈을 예방하는 것이 요구되므로, 본 논문에서는 머신러닝을 적용하여 해군 정비지원부대의 퇴직자 예측 모델을 제안하였다. 정비인력의 만족도와 관계가 있을 것으로 예상되는 봉급, 특근율 등을 변수로 사용하였고, F1 Score를 통해 모델의 성능을 평가한 결과 0.7 이상의 높은 성능을 보였다. 이 모델을 통해 조기 퇴직이 예상되는 그룹의 공통 개선소요를 파악하여 사전 조치가 가능할 것으로 판단하였다.

목차

요약
Ⅰ. Introduction
Ⅱ. Preliminaries
Ⅲ. The Proposed Scheme
Ⅳ. Results
Ⅴ. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-004-001640728