메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박지민 (연세대학교) 김광염 (한국해양대학교) 윤태섭 (연세대학교)
저널정보
한국지반공학회 한국지반공학회논문집 한국지반공학회논문집 제39권 제8호
발행연도
2023.8
수록면
17 - 28 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구에서는 화강암 시편을 대상으로 파쇄 유체의 점성과 주입 속도를 변화시키며 실내 수압 파쇄 실험을 수행하였고, 3D X-ray CT 촬영을 통해 파쇄 후 시편 내부를 관찰하였다. 이미지 처리에 탁월한 성능을 보이는 합성곱 신경망(Convolutional Neural Network, CNN) 기반 Nested U-Net 모델 구조를 활용하여 CT 이미지 내 수압 파쇄 균열 추출을 수행하였고, 복잡한 형상의 미세균열을 정교하게 추출할 수 있었다. CNN 기반 모델로 추출된 균열을 3차원으로 재구성하여 균열의 부피, 두께, 굴곡도, 균열면 거칠기를 분석하였다. 그 결과 파쇄 유체의 점성이 클수록 균열 부피와 두께가 증가하였고, 굴곡도와 균열면의 거칠기가 감소하는 경향을 보였다. 또한 균열면의 굴곡도와 거칠기 이방성이 존재함을 확인할 수 있었다. 본 연구는, CNN 기반의 균열 추출 모델을 활용해 전통적인 이미지 처리 방법보다 정교한 균열 추출을 수행하고, 이를 기반으로 수압 파쇄 균열의 정량 분석을 성공적으로 수행하였다.

목차

Abstract
요지
1. 서론
2. 수압 파쇄 실험 방법
3. 수압 파쇄 균열의 형태학적 분석(morphological analysis)
4. 결과 및 분석
5. 결론
참고문헌 (References)

참고문헌 (43)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-531-002036642