메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
안세희 (경희대학교) 정재윤 (경희대학교)
저널정보
한국전자거래학회 한국전자거래학회지 한국전자거래학회지 제28권 제3호
발행연도
2023.8
수록면
43 - 53 (11page)
DOI
10.7838/jsebs.2023.28.3.043

이용수

DBpia Top 10%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
수요예측은 모든 산업에서 사업 기획 및 운영 계획의 중요한 기초 자료로 사용된다. 본 논문에서는 수요예측 경진대회인 M5 Competition 데이터를 대상으로 Temporal Fusion Transformer(TFT) 모형을 적용하였고, 이 대회에서 우승한 DRFAM 기법과 정확도를 비교하였다. M5 Competition의 Walmart 데이터셋 중 CA_1 매장의 판매량 데이터를 대상으로 성능을 평가하였으며, 매장(store) 수준과 카테고리(category) 수준의 데이터풀(data pool)로 각각 TFT 모형을 학습한 후 예측값을 산술평균하는 방식을 사용하였다. 그 결과, 세 가지 수준의 데이터풀에 대해 직접적 예측모형(direct forecasting)과 재귀적 예측모형(recursive forecasting)으로 총 6개의 LightGBM 모형을 학습하여 산술평균으로 예측하는 DRFAM 기법보다 평균적으로 개선된 예측 정확도를 달성하였다. 이를 통해 TFT 모형이 자기-어텐션 구조를 사용하여 시계열에서 변수와 판매량 간의 관계를 충분히 학습하였음을 알 수 있었다. DRFAM 기법의 직접적 예측모형과 재귀적 예측모형이 28일 간의 예측을 위하여 28회 반복호출을 해야 하지만, TFT 모형은 다중 출력 구조이기 때문에 한번 모형 호출로 28개의 시계열 예측이 가능하다. 본 논문에서 제안한 TFT 기반의 예측모형은 보다 빠르고 정확한 시계열 예측을 제공하여 다양한 분야에 확대 적용할 수 있을 것으로 기대한다.

목차

초록
ABSTRACT
1. 서론
2. 관련 연구
3. TFT를 이용한 판매량 예측
4. 실험 결과
5. 결론 및 추후 연구
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-004-002025943