본 논문에서는 생성된 이미지에 대한 객체 인식률이 디노이징 여부에 따라 어떻게 변화하는지를 살펴본다. 최근 객체 인식의 성능을 저하하는 적대적 공격과 방어 기법이 활발히 연구되며 객체 인식의 성능이 현저히 떨어지는 상황이 발생하고 있다. 이에 선행 연구에서는 DALL-E 2를 이용해 생성한 이미지에 대한 객체 인식률을 점검하는 연구만을 진행하였으나, 본 연구에서는 stable diffusion을 이용해 생성한 이미지 데이터 세트에 디노이징 모델 NAFNet, PNGAN을 적용해 객체 인식률을 점검하였다. 그 결과 NAFNet은 93.8%, PNGAN은 92.7%로 기존 생성 이미지에 대한 객체 인식률인 96.4%보다 낮음을 확인하였다. 또한 생성 모델을 이런 딥러닝 모델로 디노이징하는 경우 심각한 화질 저하가 발생함을 보고한다.