메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Inpyo Song (Korea Aerospace University) Jangwon Lee (Korea Aerospace University)
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 한국방송·미디어공학회 2023 하계학술대회
발행연도
2023.6
수록면
281 - 284 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Kinship verification, a field of growing interest, is experiencing significant advancements owing to the breakthroughs in computer vision and deep learning. However, automated kinship verification, largely dependent on image data, often grapples with challenges related to individual appearance difference and inconsistent image conditions. This paper introduces a multitask learning approach designed to enrich the model"s understanding from varied perspectives, thus facilitating robust and comprehensive feature extraction from images. The study further integrates a margin-based softmax loss function to distinctly separate image features, ultimately bolstering the kinship verification system"s performance and robustness.

목차

Abstract
1. Introduction
2. Related Work
3. Proposed Approach
4. Experiments
5. Conclusions
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-567-001938070