메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
황호진 (중부대학교)
저널정보
(사)한국CDE학회 한국CDE학회 논문집 한국CDE학회 논문집 제28권 제3호
발행연도
2023.9
수록면
273 - 281 (9page)
DOI
10.7315/CDE.2023.273

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
With the increasing importance of initial response in emergency maritime rescue systems, there has been a rise in applications involving aerial delivery or dropping of objects from unmanned vehicles. Training plays a vital role in supporting mission execution in military and emergency situations. However, real-world training encounters limitations in terms of cost and safety, making virtual training a viable alternative. This paper analyzes and proposes approaches for realtime simulation of dropping object from unmanned vehicles for educational training purposes. The educational training simulation models can be classified into three categories: physics-based simulation mathematical models, data-driven search models, and probability-based simulation estimation models. Physics-based models ensure accuracy, but real-time processing is challenging. Data-driven models, on the other hand, cannot adapt to new input conditions. Therefore, a probability-based simulation estimation model, considering uncertainties, is deemed suitable for educational training simulations. The probability-based model provides estimation outputs based on probability distributions, accommodating diverse variables. To implement a specific probability-based estimation model, diverse environmental input conditions should be utilized, and simulation results must be compared and validated against mathematical models. The model"s development is expected to enhance real-time aerial delivery and dropping training, improving mission execution efficiency.

목차

ABSTRACT
1. 서론
2. 관련 연구
3. 시뮬레이션 모델 분석
4. 실시간 시뮬레이션에 적합한 모델
5. 결론
References

참고문헌 (18)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0