메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
문세인 (성균관대학교) 박민수 (성균관대학교) 백창룡 (성균관대학교)
저널정보
한국통계학회 응용통계연구 응용통계연구 제36권 제4호
발행연도
2023.8
수록면
295 - 307 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
HAR 모형은 간단한 선형 모형으로 실현 변동성의 장기기억성을 비교적 잘 설명할 수 있어 널리 쓰이고 있다. 하지만, 실현 변동성은 조건부 이분산성, 레버리지 효과, 변동성 집중 등과 같은 복잡한 특징을 보이고 있기에 단순 HAR 모형을 확장할 필요가 있다. 따라서 본 연구는 조건부 이분산성을 설명하는 GARCH 모형에 임계값에 따라 계수가 달라지는 비선형 모형인 임계 HAR 모형(THAR-GARCH)을 제안하고 그 추정 방법 및 예측 성능에 대해서 살펴보고자 한다. 보다 구체적으로 오차항의 등분산 가정을 벗어났기 때문에 모형의 계수를 추정하기 위해서 반복적인 가중최소제곱추정법을 제안하고 모의실험을 통해 일치성을 보였다. 또한 전 세계 21개의 주요 주가 지수의 실현 변동성에 대한 예측 오차를 비교함으로써 제안한 GARCH 오차를 가지는 임계 HAR 모형이 일반적으로 더 우수한 예측력을 보임을 확인하였다.

목차

Abstract
1. 서론
2. 방법론
3. 모의 실험
4. 실증자료분석
5. 결론 및 논의점
References
요약

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0