메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Kim, Jinseok (Seoul National University) Kim, Kyung-Min (Seoul National University)
저널정보
대한국토·도시계획학회 국토계획 國土計劃 第58卷 第4號(通卷 第271號)
발행연도
2023.8
수록면
160 - 177 (18page)
DOI
10.17208/jkpa.2023.08.58.4.160

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The house price index is essential for assessing the housing market conditions and predicting future changes in the market. However, the two main methods for calculating the housing price index, the appraisal-based index and transaction-based index, have significant drawbacks. The appraisal-based index method has issues such as smoothing and lag bias owing to the involvement of human appraisers, and it also requires significant manpower for calculations. The transaction-based index method requires numerous transaction samples to achieve statistical significance, making it challenging to be created for small regions or when transactions are scarce. To address these issues, we propose an alternative approach that employs a machine learning model to estimate time-series transaction prices for individual apartments and builds a Laspeyres index with the estimated prices. We demonstrated the model’s ability to capture serial correlation of house prices, enabling accurate estimations even with unobserved potential prices. Comparing our prediction-based index to existing Korean house price indices, we observed local smoothing but overall alignment with the global trend of the transaction-based index, facilitating smooth index calculation for small areas. This study offers a novel method for house price index calculation that mitigates limitations of traditional approaches by using machine learning for more precise house price estimation, even with limited housing transaction data.

목차

Abstract
Ⅰ. Introduction
Ⅱ. Literature Review
Ⅲ. Hypothesis and Scope of Study
Ⅳ. Research Methods
Ⅴ. Description of Data and Model
VI. Results
VII. Conclusion
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-539-002018099