메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
안종규 (서울대) 조항만 (서울대)
저널정보
대한건축학회 대한건축학회논문집 大韓建築學會論文集 第39卷 第8號(通卷 第418號)
발행연도
2023.8
수록면
37 - 48 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study introduces an objective typification methodology that employs deep learning to analyze the exterior appearances of buildings. The conventional approach to typification was reliant on subjective analysis and was limited in terms of the number of structures that could be assessed. This study aimed to overcome these limitations by establishing an objective typification method using deep learning, focusing specifically on public office buildings. The research process involved a comprehensive survey of domestic public office buildings to compile an image dataset. Subsequently, a model was constructed utilizing Convolutional Neural Networks (CNN), a form of deep learning, to grasp the distinctive features of building images. These features, extracted from the CNN model, were then organized into groups through k-means clustering. The outcome of this clustering enabled the analysis of each cluster’s unique characteristics, facilitating the establishment of typification criteria such as building height, fa?ade pattern, materials, protrusions, and roof structures. This methodology’s effectiveness was validated through a comparative analysis with prior research. The results of this study offer potential applications in fundamental investigations concerning the current state of public office buildings and in typification studies encompassing diverse architectural forms beyond public office buildings.

목차

Abstract
1. 서론
2. 문헌고찰
3. 딥러닝 기반 외관 유형화 방법론
4. 분석 결과
5. 결과 해석 및 논의
6. 결론 및 의의
REFERENCES

참고문헌 (32)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-540-002018225