메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이송연 (한국기술교육대학교) 허용정 (한국기술교육대학교)
저널정보
Korean Society for Precision Engineering Journal of the Korean Society for Precision Engineering Journal of the Korean Society for Precision Engineering Vol.40 No.9
발행연도
2023.9
수록면
677 - 683 (7page)
DOI
10.7736/JKSPE.022.106

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Bone plates are a medical device used for fixing broken bones, which should not have a crack and hole defect. Defect detection is very important because bone plate defect is very dangerous. In this study, we proposed a defect detection model based on a parallel type convolution neural network for detecting bone plate crack and pore deformation. All size filters were different according to the defect shape. A convolution neural network detected pore defects. Another convolution neural network detected the crack. Two convolution neural networks simultaneously detected different defect types. The performance of the defect detection model was measured and used for the F1- score. We confirmed that performance of the defect detection model was 98.4%. We confirmed that the defect detection time was 0.21 seconds.

목차

1. 서론
2. 골절합용 판의 이미지 데이터 수집
3. 병렬 구조의 불량 탐지 알고리즘 제작
4. 모델 검증 및 결과
5. 결론
REFERENCES

참고문헌 (14)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-555-002004546