메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
강태현 (중앙대학교) 황범석 (중앙대학교)
저널정보
한국통계학회 응용통계연구 응용통계연구 제36권 제1호
발행연도
2023.2
수록면
85 - 100 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Stochastic volatility (SV) 모형은 시변 변동성을 모델링하는 주요한 수단 중 하나이며, 특히 금융시장 변동성의 추정 및 예측, 옵션의 가격 결정 등의 분야에서 활발하게 사용되고 있다. 본 논문은 SV 모형을 활용하여 비트코인 시장의 시변 변동성을 모델링하고자 한다. 시장의 변동성은 국면 전환의 특성을 갖고 있다고 알려져 있으며, 시장의 변동 국면을 나누기 위해 시계열의 패턴을 인식하는 작업에 유용한 hidden Markov model (HMM)을 결합하여 사용하고자 한다. 본 연구는 암호화폐 거래 사이트 업비트의 비트코인 데이터를 활용하여 비트코인의 변동성 모형을 추정하였으며 SV 모형의 성능을 높이기 위하여 시장의 변동 국면을 나누어 분석을 진행하였다. MCMC 기법이 SV 모델의 모수를 추정하는 데 사용되며 MAPE, MSE 등의 평가 기준을 통하여 모델의 성능을 확인하고자 한다.

목차

Abstract
1. 서론
2. 모형 설명
3. 실제 데이터 분석
4. 결론 및 향후 보완과제
References
요약

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0