메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Nakgyeom Kim (University of Seoul) Jihoon Shin (University of Seoul) YoonKyung Cha (University of Seoul)
저널정보
대한환경공학회 Environmental Engineering Research Environmental Engineering Research 제29권 제2호
발행연도
2024.4
수록면
70 - 80 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The algal blooms caused by eutrophication is a major concern in water and aquatic resource management, and various attempts have been made to accurately predict it. Algal blooms and the factors influencing them exhibit high spatial variability depending on the characteristics of the water body and water flow. However, traditional machine learning and deep learning methods have limitations to account for the spatial interactions of various influencing factors across multiple monitoring sites. In addition, attempts to predict multiple sites simultaneously using a single model are limited. In this study, we proposed a model that considers spatial interactions and performs multisite predictions based on a graph attention network (GAT). The GAT–DNN, which combines a deep neural network (DNN) after GAT layer, was applied to forecast chlorophyll-a levels at multiple sites. The proposed model accurately captured the high variability and peak chlorophyll-a levels. Moreover, the GAT–DNN consistently outperformed two baseline DNNs in both cases. Additionally, we examined the optimal forecast horizon by comparing the performance of the model across various forecast horizons. Therefore, the proposed model can be applied to a wide range of prediction models to capture spatial interactions and obtain the benefits of performance outcomes for each site.

목차

ABSTRACT
1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
References

참고문헌 (57)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0