메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김태현 (한국과학기술원) 류덕산 (전북대학교) 백종문 (한국과학기술원)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.50 No.8
발행연도
2023.8
수록면
688 - 699 (12page)
DOI
10.5626/JOK.2023.50.8.688

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
순환 신경망 기반 소프트웨어 신뢰성 추정에 관한 기존 연구들은 순환 신경망을 이용하여 동일한 조건에서 하나의 모델을 생성하고 그 모델의 정확성을 평가하였다. 하지만 순환 신경망은 인공 신경망의 무작위성으로 인해 같은 조건에서도 모델의 훈련 결과를 다르게 생성할 수 있으며 이는 부정확한 소프트웨어 신뢰성 추정을 초래할 수 있다. 따라서 본 논문에서는 어떤 순환 신경망이 소프트웨어 신뢰성을 더 안정적이고 정확하게 추정하는지 비교 분석하고 그 결과를 제시한다. 이를 위해 3개의 대표적인 순환신경망을 이용하여 8개의 실제 프로젝트에서 소프트웨어 신뢰성을 추정하고 정확성과 안정성 측면에서 모델들의 성능을 비교 분석하였다. 그 결과 Long Short Term Memory가 가장 안정되고 정확한 소프트웨어 신뢰성 추정 성능을 보임을 확인하였다. 본 논문을 통해 우리는 보다 정확하고 안정된 소프트웨어 신뢰성 추정 모델을 선택할 수 있기를 기대한다.

목차

요약
Abstract
1. 서론
2. 관련 연구 및 문제점
3. 전반적인 접근법
4. 실험 설계
5. 실험 결과 및 분석
6. 위협 요소
7. 결론
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0