메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
부석준 (연세대학교) 조성배 (연세대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.50 No.8
발행연도
2023.8
수록면
633 - 638 (6page)
DOI
10.5626/JOK.2023.50.8.633

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
악성분류 분류에서 미탐 사례를 최소화하기 위해 연산 블락과 메모리 레지스터 주소 간의 제어 흐름 같은 프로그램의 국소적 특징을 포착하는 것이 중요하다. 그러나 악성코드의 기능적 특징을 고려하지 않고 분류기의 손실 함수를 최적화하는 기존의 방법은, 유사하지만 새로운 공격 경로를 활용하는 공격과 길고 복잡한 제어 흐름 그래프로 인해 재현율에 한계가 있다. 본 논문에서는 API호출, 루트킷 DLL설치, 특정 가상메모리의 접근을 포함하는 기능적 특징을 학습하는 것으로 재현율을 개선하기 위해 제어흐름 그래프를 명시적으로 샘플링하고 임베딩하는 방법을 제안한다. 제어 흐름 그래프로부터 악성코드의 기능적 패턴을 모델링하기 위해 악성코드의 제어 흐름으로부터 공격 경로를 샘플링한 뒤 트랜스포머 기반의 그래프 임베딩 함수를 이용하여 악성코드 종류를 분류한다. 제안하는 방법을 입증하기 위해 실제 윈도우 악성코드로 구성된 마이크로소프트 챌린지 데이터셋을 사용하였다. 악성코드의 제어 흐름을 명시적으로 학습함으로써 최고 의 재현율 97.89%를 확보하였고, 최신 및 가장 진보된 방법의 분류 정확도(97.89%)에 대비하여 크게 개선된 정확도(99.45%)를 달성하였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 방법
4. 실험 및 결론
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0