메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
유지은 (숙명여자대학교) 조솔비 (숙명여자대학교) 유석종 (숙명여자대학교)
저널정보
한국정보기술학회 한국정보기술학회논문지 한국정보기술학회논문지 제21권 제7호(JKIIT, Vol.21, No.7)
발행연도
2023.7
수록면
1 - 6 (6page)
DOI
10.14801/jkiit.2023.21.7.1

이용수

DBpia Top 5%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
베스트셀러 도서는 독자들이 책을 선택하는 가장 보편적인 방법이며, 이러한 이유로 베스트셀러의 예측과 선정은 출판 시장에서 중요한 마케팅 전략 지표이다. 본 연구에서는 도서의 메타 데이터를 활용하여 베스트셀러 순위 200위 내 유지 여부와 판매 지수 구간을 예측하는 모델을 제안하고, 다양한 머신러닝 알고리즘의 성능을 비교평가하고자 한다. 이를 위하여 Yes24 사이트의 월간 베스트셀러 데이터를 크롤링하여 수집하고, 각 데이터 속성에 대해 적절한 전처리를 수행하였다. 순위 유지 여부 예측을 위해 다양한 분류 알고리즘을 활용하였고, 최종적으로 각 알고리즘의 예측 성능을 평가한 결과, 다중 퍼셉트론, CatBoost, 랜덤 포레스트의 순서로 정확도가 높게 나타났다. 본 연구는 베스트셀러 순위 유지 여부 예측 문제에 대해 주요 분류 알고리즘의 수행 성능을 종합적으로 비교했다는데 의미가 있다. 그러나 한계점으로 리뷰 수, 평점 등에 의존하는 예측 방법에서는 데이터가 부족한 신간 도서에서 cold start 문제를 극복하기 어려웠으며, 이에 대한 후속 보완 연구의 필요성을 제안한다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 베스트셀러 예측을 위한 머신러닝 알고리즘 성능 비교
Ⅳ. 실험 및 성능 평가
Ⅴ. 결론 및 향후 연구
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-004-001937135