메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Seonghui Min (Korea University) Won-Ki Jeong (Korea University)
저널정보
한국컴퓨터그래픽스학회 컴퓨터그래픽스학회논문지 컴퓨터그래픽스학회논문지 제29권 제3호
발행연도
2023.7
수록면
127 - 135 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
조직병리에서 전체 슬라이드 영상의 정확한 분할은 질병 진단과 치료 계획에 매우 중요한 작업이다. 그러나 전체 슬라이드 영상은 크기가 크고 조직의 형태, 염색 및 촬영 조건이 다양하기 때문에 기존의 자동 영상 분할 알고리즘을 항상 적용하는 것은 어렵다. 최근 인간의 전문 지식과 알고리즘을 결합한 대화형 영상 분할 기술의 발전은 전체 슬라이드 영상 분할의 효율 성과 정확성을 개선할 수 있는 가능성을 보여주었다. 그러나 이러한 접근 방식은 동시에 어려운 과제를 제기하기도 했다. 본 논문에서는 다중 해상도 전체 슬라이드 영상을 활용하는 새로운 대화형 분할 방법인 ZoomISEG를 제안한다. 기존의 단일 스케일 방법과의 비교 및 ablation study를 통해 제안된 방법의 효율성과 성능을 입증한다. 실험 결과, 제안된 방법은 사람의 개입을 줄이면서도 최고 해상도 데이터를 사용하는 방식에 필적하는 정확도를 달성함을 확인했다.

목차

요약
Abstract
1. Introduction
2. Methods
3. Experiments
4. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0