메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이승준 (Hanwha Systems)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제28권 제7호(통권 제232호)
발행연도
2023.7
수록면
47 - 55 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 전투체계 위협지수를 머신러닝 모델 중 Gradient Boosting Regreesor, Suppor Vector Regressor를 통해 예측하는 방법을 제시한다. 현재 전투체계는 안전성과 신뢰성이 중시되는 소프트웨어이므로 신뢰성이 보장되지 않은 AI 기술의 적용을 정책상 제한하고 있으며, 이로 인하여 전력화된 국내 전투체계는 AI 기술을 탑재하고 있지 않다. 하지만 AI의 전력화를 목표로 하는 국방부의 정책 방향에 대응하기 위하여, 전투체계의 머신러닝 적용에 필요한 기반 기술을 확보하기 위한 연구를 실시하였다. 이 연구는 위협지수 평가에 필요한 데이터를 수집한 뒤 데이터 가공 및 정제, 머신러닝 모델 선정 및 최적의 하이퍼 파리미터를 선정하여 학습된 모델의 예측 정확도를 판단하였다. 그 결과 테스트 데이터에 대한 모델 점수가 99점 이상으로 도출되었으며 전투체계에 머신러닝 모델의 적용 가능성을 확인하였다.

목차

Abstract
요약
I. Introduction
II. Preliminaries
III. The Proposed Scheme
IV. Test Results and Evaluation
V. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0