메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이형민 (호서대학교) 임근택 (제이비주식회사) 조규선 (호서대학교)
저널정보
한국가스학회 한국가스학회지 한국가스학회지 제27권 제2호
발행연도
2023.6
수록면
49 - 56 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
4차 산업혁명으로 인공지능(AI, Artificial Intelligence) 관련 기술이 고도로 성장함에 따라 여러 분야에서 AI를 접목하는 사례가 증가하고 있다. 주요 원인은 정보통신기술이 발달됨에 따라 기하급수적으로 증가하는 데이터를 사람이 직접 처리․분석하는데 현실적인 한계가 있고, 새로운 기술을 적용하여 휴먼 에러에 대한 리스크도 감소시킬 수 있기 때문이다. 이번 연구에서는 ‘원격 전위 측정용터미널(T/B, Test Box)’로부터 수신된 데이터와 해당시점의 ‘원격 정류기’ 출력을 수집 후, AI가 학습하도록 하였다. AI의 학습 데이터는 최초 수집된 데이터의 회기분석을 통한 데이터 전처리로 확보하였고, 학습모델은 심층 강화학습(DRL, Deep Reinforce-ment Learning) 알고리즘 中 Value기반의 Q-Learning모델이 적용하였다. 데이터 학습이 완료된 AI는 실제 도시가스 공급지역에 투입하여, 수신된 원격T/B 데이터를 기반으로 AI가 적절하게 대응하는지 검증하고, 이를 통해 향후 AI가 전기방식 관리에 적합한 수단으로 활용될 수 있는지 검증하고자 한다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 이론 및 기술
Ⅲ. AI의 정류기제어 설계
Ⅳ. AI의 정류기제어 현장적용
Ⅴ. 결론
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-575-001724661