메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김진선 (강원대학교) 최성운 (강원대학교) 금창엽 (강원대학교) 이재희 (강원대학교) 장웅기 (강원대학교) 임광석 (강원대학교) 이형석 (강원대학교) 김병희 (강원대학교) 윤태진 (강원대학교)
저널정보
Korean Society for Precision Engineering Journal of the Korean Society for Precision Engineering Journal of the Korean Society for Precision Engineering Vol.40 No.7
발행연도
2023.7
수록면
519 - 526 (8page)
DOI
10.7736/JKSPE.023.050

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Falls are common among older people. Age-related changes in toe strength and force steadiness may increase fall risk. This study aimed to evaluate the performance of a fall risk prediction model using toe strength and force steadiness data as input variables. Participants were four healthy adults (25.5±1.7 yrs). To indirectly reproduce physical conditions of older adults, an experiment was conducted by adding conditions for weight and fatigue increase. The maximal strength (MVIC) was measured for 5 s using a custom toe dynamometer. For force steadiness, toe flexion was measured for 10 s according to the target line, which was 40% of the MVIC. A one-leg-standing test was performed for 10 s with eyes-opened using a force plate. Deep learning experiments were performed with seven conditions using long short-term memory (LSTM) algorithms. Results of the deep learning model were randomly mixed and expressed through a confusion matrix. Results showed potential of the model"s fall risk prediction with force steadiness data as input variables. However, experiments were conducted on young adults. Additional experiments should be conducted on older adults to evaluate the predictive model.

목차

1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusion
REFERENCES

참고문헌 (36)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-555-001767075