메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Mediana Aryuni (Bina Nusantara University) Suko Adiarto (University of Indonesia) Eka Miranda (Bina Nusantara University) Evaristus Didik Madyatmadja (Bina Nusantara University) Albert Verasius Dian Sano (Bina Nusantara University) Elvin Sestomi (Bina Nusantara University)
저널정보
한국지능시스템학회 INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS Vol.23 No.2
발행연도
2023.6
수록면
140 - 151 (12page)
DOI
10.5391/IJFIS.2023.23.2.140

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In the field of medical data mining, imbalanced data categorization occurs frequently, which typically leads to classifiers with low predictive accuracy for the minority class. This study aims to construct a classifier model for imbalanced data using the SMOTE oversampling algorithm and a heart disease dataset obtained from Harapan Kita Hospital. The categorization model utilized logistic regression, decision tree, random forest, bagging logistic regression, and bagging decision tree. SMOTE improved the model prediction accuracy with imbalanced data, particularly for minority classes.

목차

Abstract
1. Introduction
2. Related Works
3. Dataset
4. Methodology
5. Results
6. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-003-001765349