메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Peddarapu Rama Krishna (Koneru Lakshmaiah Education Foundation) Pothuraju Rajarajeswari (Koneru Lakshmaiah Education Foundation)
저널정보
한국지능시스템학회 INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS Vol.23 No.2
발행연도
2023.6
수록면
117 - 129 (13page)
DOI
10.5391/IJFIS.2023.23.2.117

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Bioinformatics has emerged as a promising field with innovative applications in various biological domains. Microarray data analysis has become the preferred technology for estimating gene expression and diagnosing diseases. However, processing and computing the vast amount of information contained in microarray data pose significant challenges. This study focuses on developing an effective feature selection model for disease diagnosis using microarray datasets. The proposed approach, mutual fuzzy swarm optimization (MFSO), uses mutual information (MI) values to compute features in a microarray gene dataset. The computed MI values are then applied to a fuzzy expert system (FES) for sample classification. To improve classification accuracy, fuzzy logic is iteratively estimated for unclassified instances in the microarray sample. The feature selection model employs a particle swarm optimization model to extract microarray sample features based on the derived MI. The swarm optimization movement is guided by an objective function. The expert system integrates fuzzy logic with human expert knowledge to perform medical diagnoses, with a specific focus on the selected features. The proposed MFSO model utilizes if-then rules to estimate the membership values of the microarray dataset features. Through simulation analysis, the performance of the proposed MFSO model is evaluated using sensitivity, specificity, and ROC values for five different microarray datasets. The results demonstrate improved performance compared to existing methods. In conclusion, this study presents a novel approach for effective feature selection in a microarray dataset for disease diagnosis. The proposed MFSO model integrates MI computation, fuzzy logic, and expert knowledge to achieve improved classification accuracy. The simulation analysis validates the effectiveness of the proposed model, highlighting its superior performance compared to existing methods.

목차

Abstract
1. Introduction
2. Related Works
3. Proposed Methodology
4. Dataset
5. Results and Discussion
6. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-003-001765329