메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Zheng Fang (Xiamen University) Bingan Yuan (Xiamen University) Mengyi Wang (Xiamen University) Bichao Ye (Xiamen University) Shunren Li (ASR Technology (Xiamen)) Yinbin Chen (Xiamen University) Hongjun Deng (Xiamen University) Shucheng Feng (Xiamen University) Kun Qian (Xiamen University)
저널정보
한국펄프·종이공학회 펄프·종이기술 펄프·종이기술 제55권 제3호(통권 제212호)
발행연도
2023.6
수록면
3 - 14 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Stacked sheets counting is an important segment in the printing and packaging industry. It can meet the strict quality control and avoid great economic loss. Traditional counting methods based on photoelectric sensors or image processing face the challenges of low efficiency, breakage, and low contrast. In this paper, a non-contact and real-time counting method was developed by combining broadband X-ray absorption spectra (XAS) with long short-term memory network (LSTM). First, 500 sheets of standard A4 (70 g/㎡) printing paper stacked one by one were scanned by the broadband XAS detection equipment. Second, the collected 500 broadband XAS data were pre-processed by principal component analysis (PCA) to reduce the data dimension. Finally, LSTM was constructed to extract the temporal features of XAS data and establish a relationship with the number of paper sheets; meanwhile, polynomial fitting model(PFM) and artificial neural network (ANN) were proposed to compare with LSTM. The results showed that the combination of broadband XAS and LSTM had a maximum error of 1.8504 sheets and a single measurement time of 0.006 sec. To the best of our knowledge, this work was the first study to analyze and utilize the broadband XAS and LSTM for counting task. It provided a new non-contact and real-time counting method for stacked sheets.

목차

ABSTRACT
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Literature Cited

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-586-001468814