메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Pyeoungkee Kim (Silla University) Xiaorui Huang (Silla University) Ziyu Fang (Silla University)
저널정보
한국정보통신학회JICCE Journal of information and communication convergence engineering Journal of information and communication convergence engineering Vol.21 No.1
발행연도
2023.3
수록면
24 - 31 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The solid-state drive (SSD) possesses higher input and output speeds, more resistance to physical shock, and lower latency compared with regular hard disks; hence, it is an increasingly popular storage device. However, tiny components on an internal printed circuit board (PCB) hinder the manual detection of malfunctioning components. With the rapid development of artificial intelligence technologies, automatic detection of components through convolutional neural networks (CNN) can provide a sound solution for this area. This study proposes applying the YOLOv5 model to SSD PCB component detection, which is the first step in detecting defective components. It achieves pioneering state-of-the-art results on the SSD PCB dataset. Contrast experiments are conducted with YOLOX, a neck-and-neck model with YOLOv5; evidently, YOLOv5 obtains an mAP@0.5 of 99.0%, essentially outperforming YOLOX. These experiments prove that the YOLOv5 model is effective for tiny object detection and can be used to study the second step of detecting defective components in the future.

목차

Abstract
Ⅰ. INTRODUCTION
Ⅱ. RELATED WORKS
Ⅲ. SSD COMPONENTS AND THEIR RECOGNITION
Ⅳ. EXPERIMENTAL RESULT AND ANALYSIS
Ⅴ. DISCUSSION AND CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-004-001659709