메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
임혜민 (인하대학교) 최동완 (인하대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.50 No.6
발행연도
2023.6
수록면
503 - 510 (8page)
DOI
10.5626/JOK.2023.50.6.503

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
최근 사전 학습된 트랜스포머 계열의 모델은 자연어 처리, 이미지 인식 등 다양한 인공지능 분야에서 활발히 사용되고 있다. 그러나 해당 모델들은 수십억 개의 파라미터를 가지고 있어 추론 시에 상당한 연산량을 필요로 하며 자원이 제한된 환경에서 사용하기에는 많은 제약이 따른다. 이러한 문제들을 해결하기 위해 본 논문은 트랜스포머 모델에 대한 그룹화 기반의 새로운 구조화된 프루닝 방법인 PGB(Permutation Grouped BERT pruning)를 제안한다. 제안된 방법은 자원 제약 조건에 따라 최적의 어텐션 순서를 변경하는 방법을 찾고, 모델의 정보 손실을 최소화하기 위해 헤드의 중요도를 기반으로 불필요한 헤드에 대해 프루닝한다. 다양한 비교 실험을 통해 사전 학습된 BERT 모델에 대한 기존의 구조화된 프루닝 방법보다 본 논문에서 제안한 방법이 추론 속도 및 정확도 손실 측면에서 더 우수한 성능을 보임을 확인한다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 제안 방법
4. 실험
5. 결론 및 향후 연구
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0