메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국환경과학회 한국환경과학회지 한국환경과학회지 제26권 제2호
발행연도
2017.2
수록면
221 - 230 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
To determine the effect of air pollution reduction policies, the long-term trend of air pollutants should be analyzed. Kolmogorov-Zurbenko (KZ) filter is a low-pass filter, produced through repeated iterations of a moving average to separate each variable into its temporal components. The moving average for a KZ(m, p) filter is calculated by a filter with window length m and p iterations. The output of the first pass subsequently becomes the input for the next pass. Adjusting the window length and the number of iterations makes it possible to control the filtering of different scales of motion. To break down the daily mean PM<sub>10</sub> into individual time components, we assume that the original time series comprises of a long-term trend, seasonal variation, and a short-term component. The short-term component is attributable to weather and short-term fluctuations in precursor emissions, while the seasonal component is a result of changes in the solar angle. The long-term trend results from changes in overall emissions, pollutant transport, climate, policy and/or economics. The long-term trend of the daily mean PM<sub>10</sub> decreased sharply from 59.6 ug/m<sup>3</sup> in 2002 to 44.6 ug/m<sup>3</sup> in 2015. This suggests that there was a long-term downward trend since 2005. The difference between the unadjusted and meteorologically adjusted long-term PM<sub>10</sub> is small. Therefore, we can conclude that PM<sub>10</sub> is unaffected by the meteorological variables (total insolation, daily mean temperature, daily mean relative humidity, daily mean wind speed, and daily mean local atmospheric pressure) in Busan.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0102-2023-451-001795289