메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Yugen Li (Yulin University) Huimei Zhang (Xi’an University of Science and Technology) Shaojie Chen (Xi’an University of Science and Technology) Hairen Wang (Yulin University) Xiaoyu Liu (Xi’an University of Science and Technology) Wei Gao (Shaanxi Shengyuan Tongtai Construction Engineering)
저널정보
한국콘크리트학회 International Journal of Concrete Structures and Materials International Journal of Concrete Structures and Materials Vol.17 No.3
발행연도
2023.5
수록면
527 - 543 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Aeolian sand (AS) can become a green resource for concrete after the reasonable utilization. Study the evolution of AS concrete (ASC) capillary water absorption (CWA) under freeze–thaw (FT) conditions is of great significance for its popularization and application. One-dimensional (1D) CWA test was performed to analyze the effects of AS and freeze–thaw cycling (FTC) on concrete water absorption characteristics. Pore relative saturation (PRS) and pore saturation were defined to reveal the influence mechanism of AS content on concrete water absorption under FT conditions and predict the moisture distribution in damaged ASC combining with the capillary mechanics theory. The results showed that concrete frost resistance increased with increased AS content and the optimal frost resistance achieved with 100% AS replacement despite its low strength. The initial water absorption rate (WAR), pore saturation, and saturation speed of the ASC decreased with increased AS, while the PRS increased with low AS content but decreased with excessive AS. The water absorption depth increased with increased mass and dynamic elastic modulus loss rates. The mechanism regarding why excessive AS improved concrete frost resistance lay in its internal pore structure and large pore ratio, which reduced pore content that can easily absorb water, enclosed a higher volume of air bubbles, and easily formed “air locking,” thereby increasing water transmission resistance and forming long transmission paths during the process of CWA.

목차

Abstract
1 Introduction
2 Materials and Methods
3 Results and Discussion
4 Prediction of Moisture Distribution under FT Conditions
5 Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-532-001502419